Overview of emerging nonvolatile memory technologies
نویسندگان
چکیده
Nonvolatile memory technologies in Si-based electronics date back to the 1990s. Ferroelectric field-effect transistor (FeFET) was one of the most promising devices replacing the conventional Flash memory facing physical scaling limitations at those times. A variant of charge storage memory referred to as Flash memory is widely used in consumer electronic products such as cell phones and music players while NAND Flash-based solid-state disks (SSDs) are increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even data centers. The integration limit of Flash memories is approaching, and many new types of memory to replace conventional Flash memories have been proposed. Emerging memory technologies promise new memories to store more data at less cost than the expensive-to-build silicon chips used by popular consumer gadgets including digital cameras, cell phones and portable music players. They are being investigated and lead to the future as potential alternatives to existing memories in future computing systems. Emerging nonvolatile memory technologies such as magnetic random-access memory (MRAM), spin-transfer torque random-access memory (STT-RAM), ferroelectric random-access memory (FeRAM), phase-change memory (PCM), and resistive random-access memory (RRAM) combine the speed of static random-access memory (SRAM), the density of dynamic random-access memory (DRAM), and the nonvolatility of Flash memory and so become very attractive as another possibility for future memory hierarchies. Many other new classes of emerging memory technologies such as transparent and plastic, three-dimensional (3-D), and quantum dot memory technologies have also gained tremendous popularity in recent years. Subsequently, not an exaggeration to say that computer memory could soon earn the ultimate commercial validation for commercial scale-up and production the cheap plastic knockoff. Therefore, this review is devoted to the rapidly developing new class of memory technologies and scaling of scientific procedures based on an investigation of recent progress in advanced Flash memory devices.
منابع مشابه
Resistive Random Access Memory (ReRAM): A Metal Oxide Memory Cell
We review the recent progress in the ReRAM technology, one of the most promising emerging nonvolatile memories, in which both electronic and electrochemical effects play important roles in the nonvolatile functionalities. We first provide a brief historical overview of the research in this field. We also provide a technological overview and the epoch-making achievements, followed by an account ...
متن کاملOverview of candidate device technologies for storage-class memory
Storage-class memory (SCM) combines the benefits of a solidstate memory, such as high performance and robustness, with the archival capabilities and low cost of conventional hard-disk magnetic storage. Such a device would require a solid-state nonvolatile memory technology that could be manufactured at an extremely high effective areal density using some combination of sublithographic patternin...
متن کاملMemory and Storage System Design with Nonvolatile Memory Technologies
The memory and storage system, including processor caches, main memory, and storage, is an important component of various computer systems. The memory hierarchy is becoming a fundamental performance and energy bottleneck, due to the widening gap between the increasing bandwidth and energy demands of modern applications and the limited performance and energy efficiency provided by traditional me...
متن کاملEnergy Efficiency Exploration of Coarse-grain Reconfigurable Architecture with Emerging Nonvolatile Memory
ENERGY EFFICIENCY EXPLORATION OF COARSE-GRAIN RECONFIGURABLE ARCHITECTURE WITH EMERGING NONVOLATILE MEMORY
متن کاملCompressed NVRAM based Memory Systems
In this paper we examine a 2-level memory system that uses emerging nonvolatile RAM (NVRAM) technologies to build a main memory system with DRAM acting like a cache. We discuss the architectural aspects of such a structure including power-performance tradeoff and how compressed NVRAM storage can help. The analysis indicates that the power benefits of using emerging NVRAM technologies can be ver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014